Ko e tokotaha naʻa ne ngaohi ʻa e Fibre Optic mafana sensor resistance, Founga vakaiʻi ʻo e ʻea, Fakapalofesinale OFETUKU/ODM Fale ngaohiʻanga, Wholesaler, Fakatau fakapatonu.

ʻĪ-meilí: fjinnonet@gmail.com |

Blogs

Ko e filo lelei taha Peleki Grating hono fakafuofuaʻi ʻo e polokalama fakatokanga ki he afi

Why do switch cabinets need fiber optic grating temperature sensing fire detection systems

The switchgear is a key equipment in the substation, and its internal switch contacts complete the execution of power dispatching. Due to excessive load, aging of contacts, and improper contact, the temperature of the contacts in switchgear can rise. ʻE faingofua pe hono fakatupu ʻe he mafana ʻo e ʻea ʻa e afi, power supply failures, power outages, and personal and property losses. The current temperature measurement method in substations mainly uses handheld infrared thermometers to measure temperature, and conducts daily inspections of each switchgear to obtain temperature status information. Each substation urgently needs an online temperature measurement technology that can automatically collect the temperature of each contact in real time, vakaiʻi e ngaahi liliu ʻo e ʻea ʻi ha founga taimi totonu mo totonu, mo e ngaahi fakatokanga kimuʻa pea fuʻu maʻolunga e ʻea, so that managers have sufficient time to take corresponding measures to avoid power outages and fires.

Fiber optic temperature sensing technology can develop a fiber optic grating temperature sensing fire detection system, which can monitor the temperature of switchgear in real time and provide early warning and alarm. ʻOku adopts ʻe he polokalama ha filo kotoa pe ʻoku ne ongoʻi ʻa e founga fua ʻo e ʻea, toʻo ʻa e ngaahi fakatuʻutamaki ʻo e founga vakaiʻi ʻo e malu pea fakaleleiʻi lahi ʻa e lava ke maʻu ʻa e founga vakaiʻi ʻo e ʻea ki hono vakaiʻi ʻo e ʻea. ʻOku fakaʻaongaʻi ʻa e filo optic ko ʻeni ʻo e ʻea ʻe ha ngaahi ʻakau malohi mo ha ngaahi kautaha maʻuʻanga malohi, fakasiʻisiʻi lahi ʻa e hoko ʻa e ngaahi fakatuʻutamaki ʻo e afi pea aʻusia moʻoni ʻa e fakaʻehiʻehi kimuʻa pea toki hoko, ʻi he laine mo e fakakaukau malu ʻo e “ʻuluaki malu, fakataumuʻa ki he fakaʻehiʻehi” ʻi he ngaahi ngaueʻanga malohi.

What are the main functions of the fiber Bragg grating temperature measurement system host

1. ʻOku ulo ʻa e ngaahi meʻangaue ʻoku ongoʻi ʻe he ʻea mo e fakamoʻoni fakaʻauha.

ʻOku adopts ʻe he fua ʻo e ʻea ʻa e faʻunga kotoa ʻo e filo, ʻa ia ʻoku ne ʻiloʻi moʻoni hono vakaiʻi ʻo e ʻea. ʻOku ʻikai fakafatongiaʻaki, ʻoku ʻikai ke ne fakatupu ha vela, pea he ʻikai ke ne fakatupu ha faʻahinga fakatuʻutamaki koeʻuhi ko e deployment ʻo e founga ongoʻi.

2. Fua ʻo e ʻea maʻolunga mo e tali ʻaukai.

The temperature measurement host has high temperature resolution and high temperature measurement accuracy. The full channel scanning time is short, with a temperature detection time of about 2 seconds for 16 ngaahi senolo.

3. Taimi moʻoni ʻoku vakaiʻi ai ʻi he ʻInitaneti.

Monitor the temperature of all measuring points in the substation switchgear continuously for 7×24 houa ʻe, and regularly save the temperature measurement data to provide auxiliary data for the health monitoring of each switchgear.

4. Accurate spatial positioning.

Fiber Bragg grating temperature sensing corresponds to each measurement point position, and each sensor has global uniqueness. The upper computer monitoring software can accurately locate the location of the sensor that triggered the alarm.

5. Mapuleʻi ʻo e fakatokanga ʻoku ala fulifulihi holo.

ʻI he polokalama fakakomipiuta ʻoku vakaiʻi ʻi he komipiuta ʻi ʻolunga, different temperature measurement points can be managed in different zones according to customer needs. ʻI he angamahení, the contacts inside the same switchgear are set as one zone. Set different alarm parameters for each temperature measurement point, hange ko e fakatokanga ki he ʻea, fakatokanga ki he mafana ʻo e ʻea, fakatokanga ki he ʻea, mo e mafana ʻo e ʻea, ke fakafaikehekeheʻi totonu ʻa e afi moʻoni mo loi, toʻo ʻa e ngaahi fakatokanga loi mo e omissions.

6. Ngaue diagnostic fakalukufua.

Each temperature sensor in this system has wavelength uniqueness, and the system database can remember its precise location. At the same time as each temperature measurement, the system performs self testing and diagnosis to detect sensor faults in real time for timely repair and maintenance.

7. Ngaahi polokalama fakakomipiuta malohi.

Taimi moʻoni ʻoku fakaʻaliʻali ai e feituʻu, ngaahi tuʻunga ʻulungaanga mahuʻinga ʻo, mo e ngaahi liliu ʻo e ʻea ʻo e feituʻu takitaha ʻoku vakaiʻi ʻi he Interface ʻo e misini ʻo e tangata. Kapau ʻoku fakanaunau ʻa e komipiuta ʻi ʻolunga ʻaki ha fakatokanga SMS module, ʻe lava ke ʻave ʻa e fakamatala fakatokanga ki he ngaahi telefoni toʻotoʻo ʻa e kau ngaue kuo vahe ke fakapapauʻi ʻoku taimi totonu hono tokangaʻi ʻo e ngaahi fakatuʻutamaki ʻo e afi. ʻI he komipiuta ʻi ʻolunga, ʻe lava foki ke fai ha fakamatala ki he mafana ʻo e ʻea mo e ngaahi lekooti fakatokanga ke fakatupu ha ngaahi lipooti ki he ngaue malu.

Filo optic e ʻea sensor resistance, Founga vakaiʻi ʻo e ʻatamai poto, Tufaki e filo optic ʻi Siaina

Maama tiupi filo optic e fua ʻo e ʻea Maama tiupi filo optic e meʻafua ʻo e ʻea Tufaki fluorescence filo optic e ʻea

fakaʻekeʻeke

ʻOsi v:

Hoko Atu:

Tuku mai ha pōpoaki