फायबर ऑप्टिक तापमान सेन्सर not only have wide applications in the fields of switchgear temperature measurement, circuit breaker temperature measurement, and transformer temperature measurement, but also have characteristics such as insulation, हस्तक्षेप विरोधी, and high voltage resistance that cannot be achieved by other traditional temperature sensors in capacitor temperature monitoring.
उच्च-व्होल्टेज समांतर कॅपेसिटर बँक डिव्हाइस सध्या पॉवर सिस्टममध्ये एक अत्यंत महत्त्वपूर्ण प्रतिक्रियाशील उर्जा स्त्रोत आहे, playing a crucial role in improving the power system structure and enhancing power quality. मुख्य कार्य पॉवर सिस्टमला प्रतिक्रियाशील शक्ती प्रदान करणे आहे, लाईन लॉस कमी करा, व्होल्टेज गुणवत्ता सुधारणे, आणि उपकरणांचा वापर वाढवा. As a type of reactive power compensation equipment, पॉवर कॅपेसिटर सामान्यतः उच्च-व्होल्टेज केंद्रीकृत नुकसानभरपाईद्वारे सबस्टेशनमध्ये वापरले जातात. The compensation capacitors are connected to the 10kV or 35kV bus of the substation to compensate for the reactive power on all lines and transformers on the bus side of the substation. In use, they are often combined with on load tap changers to further improve the power quality of the power system.
The effect of temperature rise fault on high-voltage capacitors
ऑपरेशन दरम्यान कॅपेसिटरमध्ये अनेकदा विविध दोष आढळतात, जे पॉवर सिस्टमच्या सुरक्षित आणि सामान्य ऑपरेशनसाठी महत्त्वपूर्ण धोका निर्माण करतात. The common faults of capacitors in power operation include oil leakage, खराब इन्सुलेशन, आणि जळलेले फ्यूज. त्यापैकी, the most harmful and frequently occurring faults are capacitor faults caused by heating. The heating caused by capacitor faults can be divided into heating at the busbar connection point and heating at the fuse outside the capacitor, नंतरचे होण्याची शक्यता जास्त आहे. अलिकडच्या वर्षांत, in the daily operation of 35kV high-voltage parallel capacitor banks, equipment may experience abnormal temperature rise due to aging or high load current due to long operating years and construction and installation processes. जर अशा असामान्य परिस्थिती आढळल्या नाहीत आणि वेळेवर हाताळल्या गेल्या नाहीत, it is easy to develop and expand, वैयक्तिक कॅपेसिटरचे नुकसान आणि समूह स्फोट आणि जखम देखील होऊ शकतात. The failure rate is high, directly threatening the safety of 500kV power equipment and the personal safety of operation and maintenance personnel, resulting in significant voltage fluctuations in the power grid, वाढलेली सक्रिय आणि प्रतिक्रियाशील उर्जा नुकसान, reduced capacitor service life, and affecting the normal and stable operation of the power grid. पॉवर फॅक्टर सुधारण्यासाठी पॉवर कॅपेसिटर मुख्यतः पॉवर सिस्टममध्ये रिऍक्टिव्ह पॉवर कॉम्पेन्सेशनसाठी वापरले जातात. In order to ensure its more reliable operation, the industry currently mainly considers connecting internal components of capacitors in series with internal fuses. When a capacitor experiences complete failure of its components due to a weak dielectric, the internal fuse connected in series with the component will act, causing only a portion of the damaged components to be isolated. कॅपेसिटर पॉवरमध्ये थोड्याशा घटाने कार्य करणे सुरू ठेवेल. या वेळी, कॅपेसिटर बँकेतील व्यत्ययाकडे दुर्लक्ष केले जाऊ शकते, and the total capacity of the capacitor bank will not be significantly affected by the action of a single fuse. अंतर्गत फ्यूजचा परिचय कॅपेसिटर घटकांचे संरक्षण करतो, but invisibly increases the number of fault points. पॉवर कॅपेसिटरच्या आत, the internal fuse is the main heat source, but the volume and diameter of the internal fuse are very small (सुमारे 135 मिमी लांबी आणि 0.45 मिमी व्यास), आणि ते सामान्यतः कॅपेसिटर घटकांमध्ये लपलेले असते. Due to current measurement techniques, वास्तविक ऑपरेटिंग परिस्थितीत अंतर्गत फ्यूजच्या पृष्ठभागाचे तापमान अचूक आणि वस्तुनिष्ठपणे मोजणे कठीण आहे.
Temperature monitoring of dry-type capacitors
सध्या, oil immersed capacitors and dry capacitors are commonly used in the high-voltage field. नंतरचे पर्यावरण संरक्षणाचे फायदे आहेत, साहित्य बचत, कमी खर्च, साधी प्रक्रिया, हलके वजन, लहान क्षेत्र, स्वयं-उपचार उत्पादन, अधिक विश्वासार्ह ऑपरेशन, चांगला आग प्रतिकार, less likely to produce high-pressure gas, आणि स्फोटक धोक्याची शक्यता मोठ्या प्रमाणात कमी केली.
A dry capacitor consists of a capacitor core, casing, sleeve, आणि इतर उपकरणे. The capacitor core is composed of capacitor components and insulation components. Capacitor components are made by winding thin film insulation media and aluminum foil electrodes with a certain thickness and number of layers, or by depositing a layer of metal on the thin film to form a metallized film. घटक गुंडाळल्यानंतर, they are loaded into the component shell, आणि संपूर्ण कॅपेसिटर कोर तयार करण्यासाठी अनेक कॅपेसिटर घटक मालिकेत किंवा समांतर जोडलेले असतात.
Dry capacitors are usually used indoors or underground with poor ventilation conditions, and the internal heat dissipation of capacitors can only rely on gas. Compared with oil immersed capacitors, the heat transfer coefficient of gas is lower, so the heat dissipation performance of dry capacitors is poor. These all have adverse effects on the operation of dry capacitors. The operation practice of the power system shows that the failure rate of capacitors is significantly higher from June to September each year than in other months. In some regions, the power industry stipulates that the hottest temperature of the core of a full film capacitor shall not exceed 80 ℃. When the temperature exceeds 80 ℃, the insulation performance of polypropylene film (PP film) as a dielectric will decrease.
सध्या, the temperature field of dry-type capacitors is generally measured using traditional temperature sensors to measure the temperature of the capacitor shell, and then calculate the internal temperature. This results in an error between the temperature value obtained and the distribution of the internal temperature field of the capacitor, which cannot accurately obtain the true temperature at the highest point.
सध्या, the temperature measurement method for the internal protection of power capacitors includes a temperature rise test. तथापि, this test only estimates the temperature rise of the internal fuse by measuring the current and resistance of the internal fuse, which has poor accuracy. In the actual process of flowing the internal fuse, the resistance of the internal fuse will change with its temperature. एकीकडे, it is difficult to ensure its constant flow, and on the other hand, अंतर्गत फ्यूजचा प्रतिकार आणि तापमान यांच्यातील पत्रव्यवहार केवळ एका विशिष्ट तापमान श्रेणीमध्ये लागू होतो. या रेंजच्या पलीकडे, अचूक परिणाम प्राप्त करणे कठीण होईल. त्यामुळे, कॅपेसिटरमधील अंतर्गत फ्यूजचे तापमान वाढ मोजण्याच्या या अप्रत्यक्ष पद्धतीला मर्यादा आणि कमी अचूकता आहे. याव्यतिरिक्त, the temperature rise of the internal fuse is measured through thermal resistance, but due to the fact that the thermal resistance is much larger in both volume and diameter than the internal fuse, it will have an impact on the actual temperature of the internal fuse during contact measurement, खराब मापन अचूकता परिणामी. हे पाहता, it is necessary to design a simple and feasible measurement device to accurately grasp the temperature of the fuse inside the capacitor under actual operating conditions, कॅपेसिटरच्या आत फ्यूजच्या डिझाइन आणि निवडीसाठी आधार प्रदान करा, and effectively improve the reliability of the fuse protection action, ensuring that the temperature of the fuse will not cause damage to the internal insulation of the capacitor.
Disadvantages of infrared thermal imager temperature measurement
सध्या, the thermal maintenance of capacitors mainly relies on infrared imaging equipment for inspection. तथापि, infrared thermal imaging cannot test the temperature in a closed environment, आणि चाचणी परिणाम हंगामावर परिणाम करतात, वेळ, आणि चाचणी उपकरणाची पृष्ठभागाची गुळगुळीतता. इन्फ्रारेड चाचणी उपकरणे महाग आहेत आणि उच्च-व्होल्टेज विद्युत उपकरणांच्या तापमानाचे दीर्घकाळ निरीक्षण करू शकत नाहीत.. There is high voltage on the capacitor, and there is strong electromagnetic interference around it, which often leads to false alarms or missed alarms in traditional detectors. त्यामुळे, it is necessary to use highly reliable and high-performance temperature sensors to monitor the temperature of capacitors in real time and effectively, in order to avoid equipment burning and power outage accidents.
याव्यतिरिक्त, current temperature measurement equipment cannot detect the specific temperature inside the capacitor. विद्यमान कॅपेसिटर महत्त्वपूर्ण तापमान बदलांसह वातावरणात वापरले जातात. Prolonged use of capacitors under abnormal temperatures can seriously affect their service life and increase their damage rate.
कॅपेसिटर फायबर ऑप्टिक तापमान मापन प्रणाली
FJINNO’s capacitor fluorescent fiber optic temperature measurement system not only solves the problem of traditional temperature sensors being unable to accurately measure the temperature of small internal fuses, but also solves the potential isolation between strong and weak currents, as well as the anti electromagnetic interference problem of data communication. It provides a good solution for comprehensively and accurately grasping the hot spot temperature of the core inside the capacitor.
फायबर ऑप्टिक तापमान निरीक्षण होस्ट तापमान मापन अलार्म सॉफ्टवेअरसह सुसज्ज आहे, आणि मॉनिटरिंग कॉम्प्युटर कम्युनिकेशन पोर्टद्वारे फायबर ऑप्टिक तापमान सिग्नल डिमॉड्युलेटरद्वारे प्रसारित तापमान माहिती गोळा करतो. Real time display of temperature data at various temperature measurement points, temperature alarm software provides graded monitoring, तापमान वक्र रेखाचित्र, तापमान वितरण प्रदर्शन, ऐतिहासिक वक्र क्वेरी, report generation and printing functions;
फायबर ऑप्टिक तापमान सेन्सर, बुद्धिमान निरीक्षण प्रणाली, चीनमध्ये वितरित फायबर ऑप्टिक निर्माता
![]() |
![]() |
![]() |