Why does the capacitor cabinet need temperature measurement
The natural heat dissipation of the capacitor cabinet body or the addition of fan heat dissipation cannot ensure the over temperature protection of the reactor when the harmonic current is high. When the line harmonic current is high, even relying on the natural heat dissipation of the capacitor cabinet body or the addition of fan heat dissipation, due to insufficient ventilation, the heat generation of the reactor is too large, which can easily damage the overall control circuit and cause insecurity.
Dus, traditional over temperature protection technology has the problem of insufficient ventilation and excessive heat generation of the reactor when the harmonic current of the line is large, which can easily damage the overall control circuit and lead to unsafe conditions.
The traditional temperature measurement method is manual temperature measurement, which requires intensive manual viewing and monitoring of the data display of the visible switchgear. Due to the dense number of temperature monitoring points, it results in high labor intensity, easy omission, and inaccurate monitoring. Verder, traditional switchgear cannot continuously measure temperature at multiple points. During use, it has the disadvantage of not being able to measure temperature in areas that are prone to temperature rise, such as inside the drawer and at the screw connection point of the primary copper bar.
Capacitor cabinets often encounter various faults during operation, wat 'n beduidende bedreiging vir die veilige en normale werking van die kragstelsel inhou. The common faults of capacitor cabinets in power operation include oil leakage, swak isolasie, en verbrande versmeltings. Onder hulle, Die skadelikste en foute wat gereeld voorkom, is kapasitorfoute wat veroorsaak word deur verhitting. The heating caused by capacitor cabinet faults can be divided into heating at the busbar connection point and heating at the fuse outside the capacitor, met laasgenoemde wat meer geneig is om te voorkom. Op die oomblik, the thermal maintenance of capacitor cabinets mainly relies on infrared imaging equipment for inspection. Egter, infrarooi termiese beelding kan nie die temperatuur in 'n geslote omgewing toets nie, en die toetsuitslae word deur die seisoen beïnvloed, Tyd, en oppervlak gladheid van die toets toerusting. Infrarooi toetstoerusting is duur en kan nie die temperatuur van hoëspanning elektriese toerusting vir 'n lang tyd deurlopend monitor nie. Daar is hoë spanning op die kondensator, en daar is sterk elektromagnetiese interferensie rondom dit, wat dikwels lei tot vals alarms of gemiste alarms in tradisionele detektors. Dus, Dit is nodig om hoogs betroubare en hoëprestasie temperatuursensors te gebruik om die temperatuur van kapasitors in reële tyd en effektief te monitor, om te verhoed dat toerusting brand en kragonderbrekings ongelukke. Bykomend, Huidige temperatuurmetingstoerusting kan nie die spesifieke temperatuur in die kondensator opspoor nie.
FJINNO’s capacitor cabinet fluorescerende veseloptiese temperatuurmetingstelsel can accurately and real-time monitor the temperature of power equipment in the distribution system. Die optiese vesel temperatuur sensor is characterized by high voltage resistance, anti-inmenging, and essential insulation, making it very suitable for temperature monitoring in the power industry. The price is reasonable, and we welcome agency cooperation.
Optiese vesel temperatuur sensor, Intelligente moniteringstelsel, Verspreide optiese veselvervaardiger in China
![]() |
![]() |
![]() |